Corresponde al cubo del primer término, más (o menos) el triple del cuadrado del primer término multiplicado por el segundo, más el triple del primer término multiplicado por el cuadrado del segundo y más (o menos) el cubo del segundo, así:
Ejercicios: CUBO DEL BINOMIO
1. (a + 3)³= a³ + 3(a)²(3) + 3(a)(3)² + (3)³
= 27 + 9a² + 27a + 27
- 2. (p – q)³ = p³ – 3(p)²(q) + 3(p)(q)² – q³= p³ – 3p²q + 3pq² - q³
3. (x + 2)³ = x³ + 3(x)²(2) + 3(x)(2)² + 2³
= x³ + 6x² + 12x + 8
- 4. (a – 3)³ = a³ + 3(a)²(3) + 3(a)(3)²+ (3)³= a³ + 9a² + 27a + 27
- 5. (t + 4)³ = t³ + 3(t)²(4) + 3(t)(4)² + (4)³ == t³ + 3(t)²(4) + 3(t)(4)² + (4)³= t³ + 12t² + 48t + 64
- 6. (2 – a)³ = 2³ – 3(2)²(a) + 3(2)(a)² – a³= 8 – 12a + 6a² - a³
- 7. (2a – b)³ = (2a)³ -3(2a)²(b)+3(2a)(b)²- b³ =8a³ – 3(4a²)b + 6ab² – b³= 8a³ – 12a²b + 6ab² – b³
- 8. (3a - 5b)³ = (3a)³-3(3a)²(5b)+3(3a)(5b)²-(5b)³= 27a³ - 135a²b + 225ab² - 125b³
9. (2x + 3y)³=(2x)³+3(2x)²(3y)+3(2x)(3y)²+(3y)³ = 8x³ + 36 x²y + 54xy² + 27y³
10. (1 – 3y)³ = (1)³ – 3(1)²(3y)+3(1)(3y)²- (3y)³ = 1 – 9y + 27y² - 27y³
11. (2 + 3t)³ = 2³ + 3 (2)²(3t) + 3(2)(3t)² + (3t)³ = 8 + 36t + 54t² +27t³
- 12. (3a –2x)³=(3a)³–3(3a)²(2x)+3(3a)(2x)²-(2x)³ = 27a³ – 54a²x + 36ax² – 8x³
13. (5a – 1)³= (5 a)³–3(5a)²(1)+3(5a)(1)² - (1)³ =125 a³ – 75a² + 15a - 1
14. (3a²-2a)³=(3a²)³–3(3a²)²(2a)+3(3a²)(2a)²-(2a)³
= (27x6) - 3(9x4) ²(2a)+(9a²)(4a²) - (8a³)
= (27x6) - (54x5) +(36a4) - (8a³)
= (27x6) - 3(9x4) ²(2a)+(9a²)(4a²) - (8a³)
= (27x6) - (54x5) +(36a4) - (8a³)
- 15. (t² + t³)³ =(t²)³+ 3(t²)²(t³) + 3(t²)(t³)² + (t³)³= t⁶ + 3t⁴t³ + 3t²t⁶ + t⁹= t⁶ + 3t⁷ + 3t⁸ + t⁹
- 16. ( 1 + x⁴)³= (1)³ + 3(1)²(x⁴) + 3(1)(x⁴)² + (x⁴)³= 1 + 3x⁴ + 3x⁸ + x¹²
- 17. (2t – 3a²)³=(2t)³–3(2t)²(3a²)+3(2t)(3a²)²– (3a²)³ == 8t³ – 36t²a² + 54ta⁴ - 27a⁶
18. (u² +5v)³=(u²)³+3(u²)²(5v)+3(u²)(5v)²+ (5v)³
= u⁶ + 15u⁴5v + 75u²v² - 125v³
- 19. ( ½ - a)³ = (½ )³ - 3(1/2)²(a) +3(1/2)(a)² – a³
= 1/8 – 3/4 a + 3/2 a² – a³
20. (1/2x + 2y)³=(1/2x)³+3(1/2x)²(2y)+ 3(1/2x)(2y)² + (2y)³
= x³/8 + 6x²y/4 – 12y²x/2 + 8y³
= 1/8 x³+ 3/2 x²y – 6 x y²+ 8 y³
21. (2/3a – 1/3b)³ =
=(2/3a)³–3(2/3a)²(1/3b)+3(2/3a)(1/3b)²+(1/3b)³
= 8a³/27 – 12a²b/27 + 6ab²/27 – 1/27b³
= 8/27 a³ – 4/9 a²b + 2/9 ab² – 1/27 b³
22. (5p/2 + 3q/2)³ =
=(5p/2)³+3(5p/2)²(3q/2)+3(5p/2)(3q/2)²+(3q/2)³
= 125p³/8 + 225p²q/8 + 135pq²/8 + 27q³/8
- 23. ( 1 m/10 – 1 n /5)³ =
= (1m/10)³–3(1m/10)²(1n/5)+3(1m/10)(1n/5)² – (1n/5)³
= m³/1000 – 3mn/500 + 3mn²/250 – n³/125
- 23. (a – a/3)³ = a³–3(a)²(a/3)+3(a)(a/3)² – (a/3)³
= a³ – 3a³/3 + 3a³/9 – a³/27
= a³ – a³ + a³/3 – a³/27
= a³/3 – a³/27
= a³ – a³ + a³/3 – a³/27
= a³/3 – a³/27
- 24. (1t/2 + 2t²)³ =
= (1t/2)³ – 3(1t/2)²(2t²) + 3(1t/2)(2t²)² - (2t²)³ =t³/8 – 6t³/4 + 12t⁵/2 – 8t⁶
=t³/8 – 3t³/2 + 6t⁵ - 8t⁶
No hay comentarios:
Publicar un comentario